↳ ITRS
↳ ITRStoIDPProof
z
if(FALSE, u, v) → v
minusNat(TRUE, x, y) → minus(x, round(x))
if(TRUE, u, v) → u
minus(x, y) → minusNat(&&(>=@z(y, 0@z), =@z(x, +@z(y, 1@z))), x, y)
round(x) → if(=@z(%@z(x, 2@z), 0@z), x, +@z(x, 1@z))
if(FALSE, x0, x1)
minusNat(TRUE, x0, x1)
if(TRUE, x0, x1)
minus(x0, x1)
round(x0)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
z
if(FALSE, u, v) → v
minusNat(TRUE, x, y) → minus(x, round(x))
if(TRUE, u, v) → u
minus(x, y) → minusNat(&&(>=@z(y, 0@z), =@z(x, +@z(y, 1@z))), x, y)
round(x) → if(=@z(%@z(x, 2@z), 0@z), x, +@z(x, 1@z))
(0) -> (2), if ((x[0] →* x[2])∧(y[0] →* y[2])∧(&&(>=@z(y[0], 0@z), =@z(x[0], +@z(y[0], 1@z))) →* TRUE))
(0) -> (3), if ((x[0] →* x[3])∧(y[0] →* y[3])∧(&&(>=@z(y[0], 0@z), =@z(x[0], +@z(y[0], 1@z))) →* TRUE))
(2) -> (0), if ((round(x[2]) →* y[0])∧(x[2] →* x[0]))
(3) -> (1), if ((x[3] →* x[1]))
if(FALSE, x0, x1)
minusNat(TRUE, x0, x1)
if(TRUE, x0, x1)
minus(x0, x1)
round(x0)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
z
if(FALSE, u, v) → v
if(TRUE, u, v) → u
round(x) → if(=@z(%@z(x, 2@z), 0@z), x, +@z(x, 1@z))
(0) -> (2), if ((x[0] →* x[2])∧(y[0] →* y[2])∧(&&(>=@z(y[0], 0@z), =@z(x[0], +@z(y[0], 1@z))) →* TRUE))
(0) -> (3), if ((x[0] →* x[3])∧(y[0] →* y[3])∧(&&(>=@z(y[0], 0@z), =@z(x[0], +@z(y[0], 1@z))) →* TRUE))
(2) -> (0), if ((round(x[2]) →* y[0])∧(x[2] →* x[0]))
(3) -> (1), if ((x[3] →* x[1]))
if(FALSE, x0, x1)
minusNat(TRUE, x0, x1)
if(TRUE, x0, x1)
minus(x0, x1)
round(x0)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
z
if(FALSE, u, v) → v
if(TRUE, u, v) → u
round(x) → if(=@z(%@z(x, 2@z), 0@z), x, +@z(x, 1@z))
(2) -> (0), if ((round(x[2]) →* y[0])∧(x[2] →* x[0]))
(0) -> (2), if ((x[0] →* x[2])∧(y[0] →* y[2])∧(&&(>=@z(y[0], 0@z), =@z(x[0], +@z(y[0], 1@z))) →* TRUE))
if(FALSE, x0, x1)
minusNat(TRUE, x0, x1)
if(TRUE, x0, x1)
minus(x0, x1)
round(x0)
(1) (round(x[2])=y[0]∧x[2]=x[0]∧&&(>=@z(y[0], 0@z), =@z(x[0], +@z(y[0], 1@z)))=TRUE∧y[0]=y[2]1∧round(x[2]1)=y[0]1∧x[2]1=x[0]1∧x[0]=x[2]1 ⇒ MINUSNAT(TRUE, x[2]1, y[2]1)≥NonInfC∧MINUSNAT(TRUE, x[2]1, y[2]1)≥MINUS(x[2]1, round(x[2]1))∧(UIncreasing(MINUS(x[2]1, round(x[2]1))), ≥))
(2) (=@z(%@z(x[2], 2@z), 0@z)=x0∧+@z(x[2], 1@z)=x1∧if(x0, x[2], x1)=y[0]∧>=@z(y[0], 0@z)=TRUE∧>=@z(x[2], +@z(y[0], 1@z))=TRUE∧<=@z(x[2], +@z(y[0], 1@z))=TRUE ⇒ MINUSNAT(TRUE, x[2], y[0])≥NonInfC∧MINUSNAT(TRUE, x[2], y[0])≥MINUS(x[2], round(x[2]))∧(UIncreasing(MINUS(x[2]1, round(x[2]1))), ≥))
(3) (-1 + (-1)x0 ≥ 0∧1 + x[2] + (-1)x1 ≥ 0∧y[0] ≥ 0∧-1 + x[2] + (-1)y[0] ≥ 0∧1 + y[0] + (-1)x[2] ≥ 0 ⇒ (UIncreasing(MINUS(x[2]1, round(x[2]1))), ≥)∧-1 + (-1)Bound + (-1)y[0] + x[2] ≥ 0∧-1 + (-1)y[0] + x[2] ≥ 0)
(4) (-1 + (-1)x0 ≥ 0∧1 + x[2] + (-1)x1 ≥ 0∧y[0] ≥ 0∧-1 + x[2] + (-1)y[0] ≥ 0∧1 + y[0] + (-1)x[2] ≥ 0 ⇒ (UIncreasing(MINUS(x[2]1, round(x[2]1))), ≥)∧-1 + (-1)Bound + (-1)y[0] + x[2] ≥ 0∧-1 + (-1)y[0] + x[2] ≥ 0)
(5) (-1 + (-1)x0 ≥ 0∧y[0] ≥ 0∧1 + x[2] + (-1)x1 ≥ 0∧-1 + x[2] + (-1)y[0] ≥ 0∧1 + y[0] + (-1)x[2] ≥ 0 ⇒ -1 + (-1)y[0] + x[2] ≥ 0∧-1 + (-1)Bound + (-1)y[0] + x[2] ≥ 0∧(UIncreasing(MINUS(x[2]1, round(x[2]1))), ≥))
(6) (-1 + (-1)x0 ≥ 0∧y[0] ≥ 0∧2 + y[0] + x[2] + (-1)x1 ≥ 0∧x[2] ≥ 0∧(-1)x[2] ≥ 0 ⇒ x[2] ≥ 0∧(-1)Bound + x[2] ≥ 0∧(UIncreasing(MINUS(x[2]1, round(x[2]1))), ≥))
(7) (-1 + (-1)x0 ≥ 0∧y[0] ≥ 0∧2 + y[0] + (-1)x1 ≥ 0∧0 ≥ 0∧0 ≥ 0 ⇒ 0 ≥ 0∧(-1)Bound ≥ 0∧(UIncreasing(MINUS(x[2]1, round(x[2]1))), ≥))
(8) (-1 + x0 ≥ 0∧y[0] ≥ 0∧2 + y[0] + (-1)x1 ≥ 0∧0 ≥ 0∧0 ≥ 0 ⇒ 0 ≥ 0∧(-1)Bound ≥ 0∧(UIncreasing(MINUS(x[2]1, round(x[2]1))), ≥))
(9) (y[0] ≥ 0∧0 ≥ 0∧0 ≥ 0 ⇒ 0 ≥ 0∧(-1)Bound ≥ 0∧(UIncreasing(MINUS(x[2]1, round(x[2]1))), ≥))
(10) (MINUS(x[0], y[0])≥NonInfC∧MINUS(x[0], y[0])≥MINUSNAT(&&(>=@z(y[0], 0@z), =@z(x[0], +@z(y[0], 1@z))), x[0], y[0])∧(UIncreasing(MINUSNAT(&&(>=@z(y[0], 0@z), =@z(x[0], +@z(y[0], 1@z))), x[0], y[0])), ≥))
(11) ((UIncreasing(MINUSNAT(&&(>=@z(y[0], 0@z), =@z(x[0], +@z(y[0], 1@z))), x[0], y[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(12) ((UIncreasing(MINUSNAT(&&(>=@z(y[0], 0@z), =@z(x[0], +@z(y[0], 1@z))), x[0], y[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(13) ((UIncreasing(MINUSNAT(&&(>=@z(y[0], 0@z), =@z(x[0], +@z(y[0], 1@z))), x[0], y[0])), ≥)∧0 ≥ 0∧0 ≥ 0)
(14) (0 = 0∧0 ≥ 0∧(UIncreasing(MINUSNAT(&&(>=@z(y[0], 0@z), =@z(x[0], +@z(y[0], 1@z))), x[0], y[0])), ≥)∧0 = 0∧0 ≥ 0∧0 = 0∧0 = 0)
POL(0@z) = 0
POL(TRUE) = 0
POL(&&(x1, x2)) = 0
POL(2@z) = 2
POL(FALSE) = 0
POL(round(x1)) = x1
POL(=@z(x1, x2)) = -1
POL(if(x1, x2, x3)) = (-1)max{(-1)x3, (-1)x2}
POL(>=@z(x1, x2)) = -1
POL(MINUS(x1, x2)) = -1 + (-1)x2 + x1
POL(+@z(x1, x2)) = x1 + x2
POL(1@z) = 1
POL(MINUSNAT(x1, x2, x3)) = -1 + (-1)x1 + (-1)x3 + x2
POL(undefined) = -1
MINUSNAT(TRUE, x[2], y[2]) → MINUS(x[2], round(x[2]))
MINUSNAT(TRUE, x[2], y[2]) → MINUS(x[2], round(x[2]))
MINUS(x[0], y[0]) → MINUSNAT(&&(>=@z(y[0], 0@z), =@z(x[0], +@z(y[0], 1@z))), x[0], y[0])
&&(FALSE, FALSE)1 ↔ FALSE1
v1 → if(FALSE, u, v)1
u1 → if(TRUE, u, v)1
+@z1 ↔
&&(TRUE, TRUE)1 ↔ TRUE1
&&(FALSE, TRUE)1 ↔ FALSE1
&&(TRUE, FALSE)1 ↔ FALSE1
if(=@z(%@z(x, 2@z), 0@z), x, +@z(x, 1@z))1 → round(x)1
%@z1 →
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
z
if(FALSE, u, v) → v
if(TRUE, u, v) → u
round(x) → if(=@z(%@z(x, 2@z), 0@z), x, +@z(x, 1@z))
if(FALSE, x0, x1)
minusNat(TRUE, x0, x1)
if(TRUE, x0, x1)
minus(x0, x1)
round(x0)